Half Inverse Problem for the Impulsive Diffusion Operator with Discontinuous Coefficient

Yaşar Çakmak ${ }^{\text {a }}$, Seval Işık ${ }^{\text {b }}$
${ }^{a}$ Cumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140 Sivas, Turkey
${ }^{b}$ Cumhuriyet University, Faculty of Education, Department of Secondary School Science and Mathematics Education, 58140, Sivas, Turkey

Abstract

The half inverse problem is to construct coefficients of the operator in a whole interval by using one spectrum and potential known in a semi interval. In this paper, by using the Hocstadt-Lieberman and Yang-Zettl's methods we show that if $p(x)$ and $q(x)$ are known on the interval $(\pi / 2, \pi)$, then only one spectrum suffices to determine $p(x), q(x)$ functions and β, h coefficients on the interval $(0, \pi)$ for impulsive diffusion operator with discontinuous coefficient.

1. Introduction

Inverse spectral problem is recovering the operator from its given spectral datas. These problems are of great importance in applied mathematics and physics, for example, vibration of a string, quantum mechanics etc. Inverse spectral problems for regular or singular Sturm-Liouville and diffusion operators are investigated in [1-32].

First results on half inverse problems for regular Sturm-Liouville operator were given by Hochstadt and Lieberman in [33]. In later years, half inverse problems for various Sturm-Liouville operators and diffusion operators, i.e., quadratic pencils of Sturm-Liouville operators, were studied by authors [34-44].

In this paper, we denote the problem $L=L(p, q, \alpha, \beta, \gamma, h, H)$ of the form

$$
\begin{equation*}
\ell y(x)=-y^{\prime \prime}(x)+[2 \lambda p(x)+q(x)] y(x)=\lambda^{2} \rho(x) y(x), x \in(0, \pi) \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
U(y):=y^{\prime}(0)-h y(0)=0, V(y):=y^{\prime}(\pi)+H y(\pi)=0 \tag{2}
\end{equation*}
$$

and the discontinuity conditions

$$
\left\{\begin{array}{l}
y\left(\frac{\pi}{2}+0\right)=\beta y\left(\frac{\pi}{2}-0\right) \tag{3}\\
y^{\prime}\left(\frac{\pi}{2}+0\right)=\beta^{-1} y^{\prime}\left(\frac{\pi}{2}-0\right)+\gamma y\left(\frac{\pi}{2}-0\right)
\end{array}\right.
$$

[^0]where real-valued functions $p(x) \in W_{2}^{1}(0, \pi), q(x) \in L_{2}(0, \pi), \lambda$ is the spectral parameter, α, β, γ are real numbers, $\beta>0,|\beta-1|^{2}+\gamma^{2} \neq 0$ and
\[

\rho(x)=\left\{$$
\begin{array}{ll}
1, & 0<x<\frac{\pi}{2} \\
\alpha^{2}, & \frac{\pi}{2}<x<\pi
\end{array}
$$, 0<\alpha \neq 1\right.
\]

To study the half inverse problem, we consider a boundary value problem \widetilde{L}, together with L, of the same form but with different coefficients $\widetilde{p}(x), \widetilde{q}(x), \widetilde{h}, \alpha, \gamma$ and $\widetilde{\beta}$. Hence, we consider a second problem $\widetilde{L}=L(\widetilde{p}, \widetilde{q}, \alpha, \widetilde{\beta}, \gamma, \widetilde{h}, H)$ of the form

$$
\begin{equation*}
\widetilde{\ell} y(x)=-y^{\prime \prime}(x)+[2 \lambda \widetilde{p}(x)+\widetilde{q}(x)] y(x)=\lambda^{2} \rho(x) y(x), x \in(0, \pi) \tag{4}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
U(y):=y^{\prime}(0)-\widetilde{h} y(0)=0, V(y):=y^{\prime}(\pi)+H y(\pi)=0 \tag{5}
\end{equation*}
$$

and the discontinuity conditions

$$
\left\{\begin{array}{l}
y\left(\frac{\pi}{2}+0\right)=\widetilde{\beta} y\left(\frac{\pi}{2}-0\right) \tag{6}\\
y^{\prime}\left(\frac{\pi}{2}+0\right)=\widetilde{\beta}^{-1} y^{\prime}\left(\frac{\pi}{2}-0\right)+\gamma y\left(\frac{\pi}{2}-0\right)
\end{array}\right.
$$

The aim of this paper is to solve half inverse problem for the problem L by using the Hocstadt-Lieberman and Yang-Zettl's methods. That is, we proved that if $p(x)$ and $q(x)$ functions are known on the interval $(\pi / 2, \pi)$, then only one spectrum suffices to determine $p(x), q(x)$ functions and β, h coefficients on the interval $(0, \pi)$ for impulsive diffusion operator with discontinuous coefficient of problem L.

2. Preliminaries

Let $\varphi(x, \lambda)$ be the solution of equation (1) satisfying the initial conditions $\varphi(0, \lambda)=1, \varphi^{\prime}(0, \lambda)=0$. There are the functions $A(x, t)$ and $B(x, t)$ whose first order partial derivatives are summable on $(0, \pi)$ for each $x \in(0, \pi)$. The following represantation for $\varphi(x, \lambda)$ solution can be obtained from the appendix

$$
\begin{align*}
\varphi(x, \lambda)= & \beta^{+} \cos \left(\lambda \mu^{+}(x)-\frac{\omega(x)}{\sqrt{\rho(x)}}\right)+\beta^{-} \cos \left(\lambda \mu^{-}(x)+\frac{\omega(x)}{\sqrt{\rho(x)}}\right) \\
& +\int_{0}^{\mu^{+}(x)} A(x, t) \cos \lambda t d t+\int_{0}^{\mu^{+}(x)} B(x, t) \sin \lambda t d t \tag{7}
\end{align*}
$$

where $\beta^{ \pm}=\frac{1}{2}\left(\beta \pm \frac{1}{\alpha \beta}\right), \mu^{ \pm}(x)= \pm \sqrt{\rho(x)} x+\frac{\pi}{2}(1 \mp \sqrt{\rho(x)}), \omega(x)=\int_{0}^{x} p(t) d t$.
It is easy to verify from the integral representation above that the following asymptotic relation is valid for $|\lambda| \rightarrow \infty$

$$
\begin{equation*}
\varphi(x, \lambda)=\beta^{+} \cos \left(\lambda \mu^{+}(x)-\frac{\omega(x)}{\sqrt{\rho(x)}}\right)+\beta^{-} \cos \left(\lambda \mu^{-}(x)+\frac{\omega(x)}{\sqrt{\rho(x)}}\right)+O\left(\frac{\exp \tau \mu^{+}(x)}{\lambda}\right) \tag{8}
\end{equation*}
$$

where $\tau:=|\operatorname{Im} \lambda|$.
The function

$$
\begin{equation*}
\Delta(\lambda):=V(\varphi)=\varphi^{\prime}(\pi, \lambda)+H \varphi(\pi, \lambda) \tag{9}
\end{equation*}
$$

is called the characteristic function for the problem L. Since the boundary value problem L is self-adjoint, all zeros of $\Delta(\lambda)$ are real and simple under the following conditions

$$
y^{\prime}(0) \overline{y(0)}-y^{\prime}(\pi) \overline{y(\pi)}=0
$$

and

$$
\int_{0}^{\pi}\left\{\left|y^{\prime}(x)\right|^{2}+q(x)|y(x)|^{2}\right\} d x>0
$$

From (8) and (9), we have

$$
\begin{equation*}
\Delta(\lambda)=\Delta_{0}(\lambda)+O\left(\frac{\exp \tau \mu^{+}(\pi)}{\lambda}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta_{0}(\lambda) & =-\beta^{+}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+\beta^{-}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right) \\
& +H \beta^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \beta^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right) .
\end{aligned}
$$

The function $\Delta(\lambda)$ is entire in λ. Zeros $\left\{\lambda_{n}\right\}_{n \geq 0}$ of $\Delta(\lambda)$ coincide with the eigenvalues of the problem L. We note that for $\lambda \in\left\{\lambda:\left|\lambda-\lambda_{n}\right|>\delta\right\}$ for fixed $\delta>0$,

$$
\begin{equation*}
\Delta(\lambda) \geq\left(\beta^{+}|\lambda \alpha|-C\right) \exp \left(\tau \mu^{+}(\pi)\right) \tag{11}
\end{equation*}
$$

3. Main Result

In this section, we consider the following half inverse problem by using Hochstadt-Lieberman and Yang-Zettl's methods in [33,40] for problem L.

Lemma 3.1. If $\lambda_{n}=\widetilde{\lambda_{n}}$ for all $n \in \mathbb{N}$ then $\beta=\widetilde{\beta}$.
Proof. Since $\lambda_{n}=\widetilde{\lambda_{n}}$ and $\Delta(\lambda), \widetilde{\Delta}(\lambda)$ are entire functions in λ of order 1 by Hadamard factorization theorem,

$$
\Delta(\lambda)=C e^{a \lambda} \widetilde{\Delta}(\lambda)
$$

for all $\lambda \in \mathbb{C}$.
Letting $|\lambda| \rightarrow \infty$ for all imaginary λ^{\prime} 's, we conclude from

$$
\lim _{|\lambda| \rightarrow \infty} \frac{\Delta(\lambda)}{\widetilde{\Delta}(\lambda)}=\frac{\beta^{+}}{\widetilde{\beta}^{+}} e^{i\left(\frac{\omega(\pi)-\bar{\omega}(\pi)}{\alpha}\right)}
$$

that

$$
a=0, C=\frac{\beta^{+}}{\widetilde{\beta}^{+}} e^{i\left(\frac{\omega(\pi)-\widetilde{\widetilde{\omega}}(\pi)}{\alpha}\right)},
$$

thus

$$
\begin{equation*}
\Delta(\lambda)=C \widetilde{\Delta}(\lambda) . \tag{12}
\end{equation*}
$$

On the other hand, (12) can be written as

$$
\begin{equation*}
\Delta_{0}(\lambda)-C \widetilde{\Delta}_{0}(\lambda)=C\left(\widetilde{\Delta}(\lambda)-\widetilde{\Delta}_{0}(\lambda)\right)-\left(\Delta(\lambda)-\Delta_{0}(\lambda)\right) \tag{13}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& C\left(\widetilde{\Delta}(\lambda)-\widetilde{\Delta}_{0}(\lambda)\right)-\left(\Delta(\lambda)-\Delta_{0}(\lambda)\right) \\
& =-\beta^{+}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+\beta^{-}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right) \\
& +H \beta^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \beta^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right) \tag{14}\\
& -C\left[-\widetilde{\beta}^{+}\left(\lambda \alpha-\frac{\widetilde{p}(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\widetilde{\omega}(\pi)}{\alpha}\right)+\widetilde{\beta}^{-}\left(\lambda \alpha-\frac{\widetilde{p}(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\widetilde{\omega}(\pi)}{\alpha}\right)\right. \\
& \left.+H \widetilde{\beta}^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \widetilde{\beta}^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right] .
\end{align*}
$$

If we multiply both sides of (14) with $\sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)$ and integrate with respect to λ in $(0, T)$ for any positive real number T, then we get

$$
\begin{align*}
& \int_{0}^{T}\left[C\left(\widetilde{\Delta}(\lambda)-\widetilde{\Delta}_{0}(\lambda)\right)-\left(\Delta(\lambda)-\Delta_{0}(\lambda)\right)\right] \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right) d \lambda \\
& =\int_{0}^{T}\left[-\beta^{+}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+\beta^{-}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right. \tag{15}\\
& \left.+H \beta^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \beta^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right] \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right) d \lambda \\
& -C \int_{0}^{T}\left[-\widetilde{\beta}^{+}\left(\lambda \alpha-\frac{\tilde{\widetilde{c}}(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\widetilde{\omega}(\pi)}{\alpha}\right)+\widetilde{\beta}^{-}\left(\lambda \alpha-\frac{\tilde{\widetilde{c}}(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\widetilde{\omega}(\pi)}{\alpha}\right)\right. \\
& \left.+H \widetilde{\beta}^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \widetilde{\beta}^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right] \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right) d \lambda .
\end{align*}
$$

Since $\left(\widetilde{\Delta}(\lambda)-\widetilde{\Delta}_{0}(\lambda)\right)=O(1)$ and $\left(\Delta(\lambda)-\Delta_{0}(\lambda)\right)=O(1)$ for λ in $(0, T)$,

$$
\begin{equation*}
\frac{C \alpha \widetilde{\beta}^{+}}{4} \cos \left(\frac{\omega(\pi)-\widetilde{\omega}(\pi)}{\alpha}\right)-\frac{\alpha \beta^{+}}{4}=O\left(\frac{1}{T}\right) \tag{16}
\end{equation*}
$$

By letting $T \rightarrow \infty$ we conclude with

$$
\begin{equation*}
C \cos \left(\frac{\omega(\pi)-\widetilde{\omega}(\pi)}{\alpha}\right)=\frac{\beta^{+}}{\widetilde{\beta}^{+}} . \tag{17}
\end{equation*}
$$

Similarly, if we multiply both sides of (14) with $\sin \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)$ and integrate again with respect to λ in $(0, T)$, then we get

$$
\begin{equation*}
C \cos \left(\frac{\omega(\pi)-\widetilde{\omega}(\pi)}{\alpha}\right)=\frac{\beta^{-}}{\widetilde{\beta}^{-}} . \tag{18}
\end{equation*}
$$

Taking $\beta>0$ into account, (17) and (18) implies that $\beta=\widetilde{\beta}$.

Theorem 3.2. Let $\left\{\lambda_{n}\right\}$ be the spectrum of both L and \widetilde{L}. If $p(x)=\widetilde{p}(x)$ and $q(x)=\widetilde{q}(x)$ on $\left(\frac{\pi}{2}, \pi\right)$, then $h=\widetilde{h}$, $\beta=\widetilde{\beta}, p(x)=\widetilde{p}(x)$ and $q(x)=\widetilde{q}(x)$ almost everywhere on $(0, \pi)$.

Proof. It is clear from [24] that the solutions $\varphi(x, \lambda), \widetilde{\varphi}(x, \lambda)$ of equations (1) and (4), respectively, with the initial conditions $\varphi(0, \lambda)=\widetilde{\varphi}(0, \lambda)=1, \varphi^{\prime}(0, \lambda)=h, \widetilde{\varphi}^{\prime}(0, \lambda)=\widetilde{h}$ can be expressed in the integral forms on ($0, \frac{\pi}{2}$),

$$
\begin{align*}
& \varphi(x, \lambda)=\cos (\lambda x-\omega(x))+\int_{0}^{x} A(x, t) \cos \lambda t d t+\int_{0}^{x} B(x, t) \sin \lambda t d t \tag{19}\\
& \widetilde{\varphi}(x, \lambda)=\cos (\lambda x-\widetilde{\omega}(x))+\int_{0}^{x} \widetilde{A}(x, t) \cos \lambda t d t+\int_{0}^{x} \widetilde{B}(x, t) \sin \lambda t d t . \tag{20}
\end{align*}
$$

where the kernels $\widetilde{A}(x, t), \widetilde{B}(x, t)$ have properties similar to those of $A(x, t), B(x, t)$.
Using (19) and (20), we find that

$$
\begin{aligned}
& \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda)=\frac{1}{2}[\cos (2 \lambda x-\theta(x))+\cos (\omega(x)-\widetilde{\omega}(x))] \\
& +\int_{0}^{x} A(x, t) \cos (\lambda x-\widetilde{\omega}(x)) \cos \lambda t d t+\int_{0}^{x} \widetilde{A}(x, t) \cos (\lambda x-\omega(x)) \cos \lambda t d t \\
& +\int_{0}^{x} B(x, t) \sin \lambda t \cos (\lambda x-\widetilde{\omega}(x)) d t+\int_{0}^{x} \widetilde{B}(x, t) \sin \lambda t \cos (\lambda x-\omega(x)) d t \\
& +\left(\int_{0}^{x} A(x, t) \cos \lambda t d t\right)\left(\int_{0}^{x} \widetilde{A}(x, t) \cos \lambda t d t\right)+\left(\int_{0}^{x} B(x, t) \sin \lambda t d t\right)\left(\int_{0}^{x} \widetilde{B}(x, t) \sin \lambda t d t\right) \\
& +\left(\int_{0}^{x} A(x, t) \cos \lambda t d t\right)\left(\int_{0}^{x} \widetilde{B}(x, t) \sin \lambda t d t\right)+\left(\int_{0}^{x} \widetilde{A}(x, t) \cos \lambda t d t\right)\left(\int_{0}^{x} B(x, t) \sin \lambda t d t\right)
\end{aligned}
$$

where $\theta(x)=\omega(x)+\widetilde{\omega}(x)$.
By extending the range of $A(x, t), \widetilde{A}(x, t)$ evenly and $B(x, t), \widetilde{B}(x, t)$ oddly with respect to the argument t, we can write

$$
\begin{align*}
& \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda)=\frac{1}{2}[\cos (2 \lambda x-\theta(x))+\cos (\omega(x)-\widetilde{\omega}(x))] \\
& +\frac{1}{2}\left[\int_{0}^{x} H_{c}(x, t) \cos (2 \lambda t-\theta(t)) d t-\int_{0}^{x} H_{s}(x, t) \sin (2 \lambda t-\theta(t)) d t\right] \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
& H_{c}(x, t)=2 A(x, x-2 t) \cos [\theta(t)-\widetilde{\omega}(x)]+2 \widetilde{A}(x, x-2 t) \cos [\theta(t)-\omega(x)] \\
& \quad-2 B(x, x-2 t) \sin [\theta(t)-\widetilde{\omega}(x)]-2 \widetilde{B}(x, x-2 t) \sin [\theta(t)-\omega(x)] \\
& \quad+K_{1}(x, t) \cos \theta(t)-K_{2}(x, t) \cos \theta(t)-M_{1}(x, t) \sin \theta(t)+M_{2}(x, t) \sin \theta(t)
\end{aligned}
$$

$$
\begin{aligned}
& H_{s}(x, t)=2 A(x, x-2 t) \sin [\theta(t)-\widetilde{\omega}(x)]+2 \widetilde{A}(x, x-2 t) \sin [\theta(t)-\omega(x)] \\
& \quad+2 B(x, x-2 t) \cos [\theta(t)-\widetilde{\omega}(x)]+2 \widetilde{B}(x, x-2 t) \cos [\theta(t)-\omega(x)] \\
& \quad+K_{1}(x, t) \sin \theta(t)-K_{2}(x, t) \sin \theta(t)+M_{1}(x, t) \cos \theta(t)-M_{2}(x, t) \cos \theta(t)
\end{aligned}
$$

$K_{1}(x, t)=\int_{-x}^{x-2 t} A(x, s) \widetilde{A}(x, s+2 t) d s+\int_{2 t-x}^{x} A(x, s) \widetilde{A}(x, s-2 t) d s$,
$K_{2}(x, t)=-\int_{-x}^{x-2 t} B(x, s) \widetilde{B}(x, s+2 t) d s-\int_{2 t-x}^{x} B(x, s) \widetilde{B}(x, s-2 t) d s$,
$M_{1}(x, t)=\int_{-x}^{x-2 t} A(x, s) \widetilde{B}(x, s+2 t) d s-\int_{2 t-x}^{x} A(x, s) \widetilde{B}(x, s-2 t) d s$,
$M_{2}(x, t)=-\int_{-x}^{x-2 t} B(x, s) \widetilde{A}(x, s+2 t) d s+\int_{2 t-x}^{x} B(x, s) \widetilde{A}(x, s-2 t) d s$.
Now, let us write the equations

$$
\begin{equation*}
-\varphi^{\prime \prime}(x, \lambda)+[2 \lambda p(x)+q(x)] \varphi(x, \lambda)=\lambda^{2} \rho(x) \varphi(x, \lambda) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
-\widetilde{\varphi}^{\prime \prime}(x, \lambda)+[2 \lambda \widetilde{p}(x)+\widetilde{q}(x)] \widetilde{\varphi}(x, \lambda)=\lambda^{2} \rho(x) \widetilde{\varphi}(x, \lambda) \tag{23}
\end{equation*}
$$

First, by multiplying (22) with $\widetilde{\varphi}(x, \lambda)$ and (23) with $\varphi(x, \lambda)$, second subtracting them side by side and then integrating on $(0, \pi)$, we get

$$
\left.\int_{0}^{\pi / 2}[2 \lambda(\widetilde{p}(x)-p(x))+\widetilde{q}(x)-q(x))\right] \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x=\left.\left(\widetilde{\varphi}^{\prime}(x, \lambda) \varphi(x, \lambda)-\varphi^{\prime}(x, \lambda) \widetilde{\varphi}(x, \lambda)\right)\right|_{0} ^{\pi / 2}+\left.\right|_{\pi / 2} ^{\pi}
$$

from the hypothesis $p(x)=\widetilde{p}(x), q(x)=\widetilde{q}(x)$ on $\left(\frac{\pi}{2}, \pi\right)$ and the initial conditions $\varphi(0, \lambda)=1, \varphi^{\prime}(0, \lambda)=0$, we obtain

$$
\begin{equation*}
\int_{0}^{\pi / 2}[2 \lambda(\widetilde{p}(x)-p(x))+(\widetilde{q}(x)-q(x))] \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x+\widetilde{h}-h+\varphi^{\prime}(\pi, \lambda) \widetilde{\varphi}(\pi, \lambda)-\widetilde{\varphi}^{\prime}(\pi, \lambda) \varphi(\pi, \lambda)=0 \tag{24}
\end{equation*}
$$

Let

$$
P(x):=\widetilde{p}(x)-p(x), Q(x):=\widetilde{q}(x)-q(x)
$$

and

$$
H(\lambda):=\widetilde{h}-h+\int_{0}^{\pi / 2}(2 \lambda P(x)+Q(x)) \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x
$$

It is clear from the properties of $\varphi(x, \lambda), \varphi^{\prime}(x, \lambda)$ and the boundary conditions (2) that the first term in (24) vanishes and thus

$$
\begin{equation*}
H\left(\lambda_{n}\right)=0 \tag{25}
\end{equation*}
$$

for each eigenvalue λ_{n}.
Let us define

$$
H_{1}(\lambda)=\int_{0}^{\pi / 2} P(x) \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x, H_{2}(\lambda)=\int_{0}^{\pi / 2} Q(x) \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x
$$

then equation (25) can be rewritten as

$$
\begin{equation*}
(\widetilde{h}-h)+2 \lambda_{n} H_{1}\left(\lambda_{n}\right)+H_{2}\left(\lambda_{n}\right)=0 . \tag{26}
\end{equation*}
$$

From (21) and (24), we obtain

$$
\begin{equation*}
|H(\lambda)| \leq\left(C_{1}+C_{2}|\lambda|\right) \exp (\tau \pi) \tag{27}
\end{equation*}
$$

for all complex λ, where $C_{1}, C_{2}>0$ is constant.
If we denote

$$
\begin{equation*}
\Phi(\lambda):=\frac{H(\lambda)}{\Delta(\lambda)} \tag{28}
\end{equation*}
$$

then $\Phi(\lambda)$ is an entire function with respect to λ.
It follows from (11) and (27) that

$$
\begin{equation*}
\Phi(\lambda)=O(1) \tag{29}
\end{equation*}
$$

for sufficiently large $|\lambda|$.
Using Liouville's Theorem, we obtain

$$
\Phi(\lambda)=C, \text { for all } \lambda
$$

where C is a constant.
Now, we can rewrite the equation $H(\lambda)=C \Delta(\lambda)$ as

$$
\begin{aligned}
& (\widetilde{h}-h)+\int_{0}^{\pi / 2}(2 \lambda P(x)+Q(x)) \varphi(x, \lambda) \widetilde{\varphi}(x, \lambda) d x= \\
& C\left\{-\beta^{+}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+\beta^{-}\left(\lambda \alpha-\frac{p(\pi)}{\alpha}\right) \sin \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right. \\
& \left.+H \beta^{+} \cos \left(\lambda \mu^{+}(\pi)-\frac{\omega(\pi)}{\alpha}\right)+H \beta^{-} \cos \left(\lambda \mu^{-}(\pi)+\frac{\omega(\pi)}{\alpha}\right)\right\}+O\left(\exp \left(\tau \mu^{+}(\pi)\right)\right) .
\end{aligned}
$$

By the Riemann-Lebesgue Lemma, the limit of the left side of the above equality exists for $\lambda \rightarrow \infty$, $\lambda \in \mathbb{R}$. Therefore, we get that $C=0$. Then

$$
\begin{equation*}
(\widetilde{h}-h)+2 \lambda H_{1}(\lambda)+H_{2}(\lambda)=0 \text { for all } \lambda \tag{30}
\end{equation*}
$$

By virtue of (21),

$$
2 H_{1}(\lambda)=\int_{0}^{\pi / 2} P(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\int_{0}^{\pi / 2} P_{1}(t) \cos (2 \lambda t-\theta(t)) d t-\int_{0}^{\pi / 2} P_{2}(t) \sin (2 \lambda t-\theta(t)) d t
$$

where

$$
\begin{equation*}
P_{1}(t)=P(t)+\int_{t}^{\pi / 2} P(x) H_{c}(x, t) d x, \quad P_{2}(t)=\int_{t}^{\pi / 2} P(x) H_{s}(x, t) d x \tag{31}
\end{equation*}
$$

If we change the order of integration, apply partial integration and take $P_{1}(\pi / 2)=P(\pi / 2)$ and $P_{2}(\pi / 2)=$ 0 into account, we get

$$
\begin{align*}
2 H_{1}(\lambda)= & \int_{0}^{\pi / 2} P(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\int_{0}^{\pi / 2} T_{1}(t) e^{2 i \lambda t} d t-\int_{0}^{\pi / 2} T_{2}(t) e^{-2 i \lambda t} d t \\
& =\int_{0}^{\pi / 2} P(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\frac{P(\pi / 2)}{2 \lambda} \sin [\lambda \pi-\theta(\pi / 2)] \tag{32}\\
& -\frac{P_{2}(0)}{2 \lambda}+\frac{i}{2 \lambda} \int_{0}^{\pi / 2} T_{1}^{\prime}(t) e^{2 i \lambda t} d t-\frac{i}{2 \lambda} \int_{0}^{\pi / 2} T_{2}^{\prime}(t) e^{-2 i \lambda t} d t
\end{align*}
$$

where

$$
T_{1}(t)=\frac{P_{1}(t)+i P_{2}(t)}{2} e^{-i \theta(t)}, \quad T_{2}(t)=\frac{P_{1}(t)-i P_{2}(t)}{2} e^{i \theta(t)}
$$

Similarly, we get

$$
2 H_{2}(\lambda)=\int_{0}^{\pi / 2} Q(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\int_{0}^{\pi / 2} Q_{1}(t) \cos (2 \lambda t-\theta(t)) d t-\int_{0}^{\pi / 2} Q_{2}(t) \sin (2 \lambda t-\theta(t)) d t,
$$

where

$$
\begin{equation*}
Q_{1}(t)=Q(t)+\int_{t}^{\pi / 2} Q(x) H_{c}(x, t) d x, \quad Q_{2}(t)=\int_{t}^{\pi / 2} Q(x) H_{s}(x, t) d x \tag{33}
\end{equation*}
$$

By changing the order of integration, we obtain

$$
\begin{equation*}
2 H_{2}(\lambda)=\int_{0}^{\pi / 2} Q(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\int_{0}^{\pi / 2} R_{1}(t) e^{2 i \lambda t} d t+\int_{0}^{\pi / 2} R_{2}(t) e^{-2 i \lambda t} d t \tag{34}
\end{equation*}
$$

where

$$
R_{1}(t)=\frac{Q_{1}(t)+i Q_{2}(t)}{2} e^{-i \theta(t)}, \quad R_{2}(t)=\frac{Q_{1}(t)-i Q_{2}(t)}{2} e^{i \theta(t)}
$$

If (32) and (34) are substituted into (30) , we get

$$
\begin{align*}
& (\widetilde{h}-h)+2 \lambda \int_{0}^{\pi / 2} P(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+\int_{0}^{\pi / 2} Q(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x+P(\pi / 2) \sin (\lambda \pi-\theta(\pi / 2)) \tag{35}\\
& -P_{2}(0)+i \int_{0}^{\pi / 2} T_{1}^{\prime}(t) e^{2 i \lambda t} d t-i \int_{0}^{\pi / 2} T_{2}^{\prime}(t) e^{-2 i \lambda t} d t+\int_{0}^{\pi / 2} R_{1}(t) e^{2 i \lambda t} d t+\int_{0}^{\pi / 2} R_{2}(t) e^{-2 i \lambda t} d t=0 .
\end{align*}
$$

Using the Riemann-Lebesgue Lemma for $\lambda \rightarrow \infty, \lambda \in \mathbb{R}$ in (35), then it follows that

$$
\left\{\begin{array}{l}
\int_{0}^{\pi / 2} P(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x=0 \tag{36}\\
P(\pi / 2)=0 \\
2(\widetilde{h}-h)+\int_{0}^{\pi / 2} Q(x) \cos (\omega(x)-\widetilde{\omega}(x)) d x=0
\end{array}\right.
$$

and

$$
\int_{0}^{\pi / 2}\left(R_{1}(t)+i T_{1}^{\prime}(t)\right) e^{2 i \lambda t} d t+\int_{0}^{\pi / 2}\left(R_{2}(t)-i T_{2}^{\prime}(t)\right) e^{-2 i \lambda t} d t=0
$$

for all complex number λ.
Since the system $\left\{e^{ \pm 2 i \lambda t}: \lambda \in \mathbb{R}\right\}$ is entire in $L_{2}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, it follows

$$
\left\{\begin{array}{l}
R_{1}(t)+i T_{1}^{\prime}(t)=0 \\
R_{2}(t)-i T_{2}^{\prime}(t)=0
\end{array}\right.
$$

which yields the following system

$$
\left\{\begin{array}{l}
\left(Q_{1}(t)+P_{1}(t) \theta^{\prime}(t)-P_{2}^{\prime}(t)\right)+i\left(Q_{2}(t)+P_{2}(t) \theta^{\prime}(t)+P_{1}^{\prime}(t)\right)=0 \\
\left(Q_{1}(t)+P_{1}(t) \theta^{\prime}(t)-P_{2}^{\prime}(t)\right)-i\left(Q_{2}(t)+P_{2}(t) \theta^{\prime}(t)+P_{1}^{\prime}(t)\right)=0
\end{array}\right.
$$

And hence,

$$
\left\{\begin{array}{l}
Q_{1}(t)+P_{1}(t) \theta^{\prime}(t)-P_{2}^{\prime}(t)=0 \tag{37}\\
Q_{2}(t)+P_{2}(t) \theta^{\prime}(t)+P_{1}^{\prime}(t)=0
\end{array} .\right.
$$

Substituting (31) and (33) into system (37) and taking $P(\pi / 2)=0$ into account, it yields

$$
\left\{\begin{align*}
Q(t) & =-\int_{t}^{\pi / 2} H_{c}(x, t) Q(x) d x-\int_{t}^{\pi / 2}\left(\theta^{\prime}(t) H_{c}(x, t)-\frac{\partial H_{s}(x, t)}{\partial t}\right) P(x) d x-\left(\theta^{\prime}(t)+H_{s}(t, t)\right) P(t) \tag{38}\\
P(t) & =-\int_{t}^{\pi / 2} P^{\prime}(x) d x \\
P^{\prime}(t) & =-\int_{t}^{\pi / 2} H_{s}(x, t) Q(x) d x-\int_{t}^{\pi / 2}\left(\theta^{\prime}(t) H_{s}(x, t)+\frac{\partial H_{c}(x, t)}{\partial t}\right) P(x) d x+H_{c}(t, t) P(t)
\end{align*}\right.
$$

If we denote that

$$
F(t)=\left(Q(t), P(t), P^{\prime}(t)\right)^{T}
$$

and

$$
K(x, t)=\left(\begin{array}{ccc}
H_{c}(x, t) & \theta^{\prime}(t) H_{c}(x, t)-\frac{\partial H_{s}(x, t)}{\partial t} & -\left(\theta^{\prime}(t)+H_{s}(t, t)\right) \\
0 & 0 & 1 \\
H_{s}(x, t) & \theta^{\prime}(t) H_{s}(x, t)+\frac{\partial H_{c}(x, t)}{\partial t} & H_{c}(t, t)
\end{array}\right)
$$

equation (38) can be reduced to a vector form

$$
\begin{equation*}
F(t)+\int_{t}^{\pi / 2} K(x, t) F(x) d x=0 \text { for } 0<t<\frac{\pi}{2} \tag{39}
\end{equation*}
$$

Since the equation (39) is a homogenous Volterra integral equation, it only has the trivial solution. Therefore, we obtain

$$
F(t)=0 \text { for } 0<t<\frac{\pi}{2}
$$

that gives us

$$
Q(t)=P(t)=0 \text { for } 0<t<\frac{\pi}{2} .
$$

Thus, we obtain

$$
p(x)=\widetilde{p}(x) \text { and } q(x)=\widetilde{q}(x) \text { on }(0, \pi) .
$$

Moreover, it is obvious that $h=\widetilde{h}$ from (36).

Appendix

Substituting the functions $\varphi(x, \lambda)$ and $\varphi^{\prime \prime}(x, \lambda)$ instead of y and $y^{\prime \prime}$ in equation (1), respectively, we directly get following equalities
$\omega(x)=x p(0)+\frac{2 \rho(x)}{\beta^{+}} \int_{0}^{x}\left[A\left(\xi, \mu^{+}(\xi)\right) \sin \frac{\omega(\xi)}{\sqrt{\rho(x)}}-B\left(\xi, \mu^{+}(\xi)\right) \cos \frac{\omega(\xi)}{\sqrt{\rho(x)}}\right] d \xi$,
$p(x)=p(0)+\left.\frac{2 \alpha^{2}}{\beta^{-}}\left[A(x, t) \sin \frac{\omega(x)}{\sqrt{\rho(x)}}+B(x, t) \cos \frac{\omega(x)}{\sqrt{\rho(x)}}\right]\right|_{t=\mu^{-}(x)-0} ^{\mu^{-}(x)+0}$,
$\beta^{+}\left[q(x)+\left(\frac{p(x)}{\sqrt{\rho(x)}}\right)^{2}\right]=2 \sqrt{\rho(x)} \frac{d}{d x}\left[A\left(x, \mu^{+}(x)\right) \cos \frac{\omega(x)}{\sqrt{\rho(x)}}+B\left(x, \mu^{+}(x)\right) \sin \frac{\omega(x)}{\sqrt{\rho(x)}}\right]$,
$\beta^{-}\left[q(x)+\left(\frac{p(x)}{\sqrt{\rho(x)}}\right)^{2}\right]=2 \sqrt{\rho(x)} \frac{d}{d x}\left\{\left.\left[A(x, t) \cos \frac{\omega(x)}{\sqrt{\rho(x)}}-B(x, t) \sin \frac{\omega(x)}{\sqrt{\rho(x)}}\right]\right|_{t=\mu^{-}(x)-0} ^{\mu^{-}(x)+0}\right\}$,
$B(x, 0)=\left.\frac{\partial A(x, t)}{\partial t}\right|_{t=0}=0$
and additionally if we suppose that $p(x) \in W_{2}^{2}(0, \pi), q(x) \in W_{2}^{1}(0, \pi)$, then the functions $A(x, t)$ and $B(x, t)$ satisfy the following system of partial differential equations

$$
\left\{\begin{array}{l}
\frac{\partial^{2} A(x, t)}{\partial x^{2}}-q(x) A(x, t)-2 p(x) \frac{\partial B(x, t)}{\partial t}=\rho(x) \frac{\partial^{2} A(x, t)}{\partial t^{2}} \\
\frac{\partial^{2} B(x, t)}{\partial x^{2}}-q(x) B(x, t)+2 p(x) \frac{\partial A(x, t)}{\partial t}=\rho(x) \frac{\partial^{2} B(x, t)}{\partial t^{2}} .
\end{array}\right.
$$

References

[1] A. V. Likov and Yu. A. Mikhailov, The theory of heat and mass transfer, Gosnergoizdat, 1963.
[2] O. N. Litvinenko, V. I. Soshnikov, The theory of heteregeneous lines and their applications in radio engineering, Radio, Moscow, 1964.
[3] J. McLaughlin, P. Polyakov, On the uniqueness of a spherical symmetric speed of sound from transmission eigenvalues, Journal of Differential Equations 107 (1994) 351-382.
[4] V. P. Meschanov, A. L. Feldstein, Automatic design of directional couplers, Sviaz, Moscow, 1980.
[5] N. N. Voitovich, B. Z. Katsenelbaum, A. N. Sivov, Generalized method of eigen-vibration in the theory of diffraction [M], Nauka, Moskov, 1997.
[6] M. Yamamoto, Inverse eigenvalue problem for a vibration of a string with viscous drag, Journal of Mathematical Analysis and Applications 152 (1990) 20-34.
[7] V. A. Ambartsumyan, Über eine frage der eigenwerttheorie, Z. Physik 53 (1929) 690-695.
[8] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe bestimmung der differentialgleichung durch die eigenwerte, Acta Mathematica 78 (1946) 1-96.
[9] I. M. Gelfand, B. M. Levitan, On the determination of a differential equation from its spectral function, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 15 (1951) 309-360.
[10] M. G. Gasymov, B. M. Levitan, On the Sturm-Liouville differential operators with discrete spectrum, American Mathematical Society Translations: Series 268 (1968) 21.
[11] V. A. Marchenko, Concerning the theory of a differential operator of the second order, Doklady Akademii Nauk 72 (1950) 457-460.
[12] N. Levinson, The inverse Sturm-Liouville problem, Matematisk Tidsskrift B 1949 (1949) 25-30.
[13] E. L. Isaacson, E. Trubowitz, The inverse Sturm-Liouville problem I, Communications on Pure and Applied Mathematics 36 (1983) 767-783.
[14] V. A. Yurko, Inverse spectral problems for linear differential operators and their applications, Gordon and Breach, New York, 2000.
[15] A. McNabb, R. Anderssen, E. Lapwood, Asymptotic behaviour of the eigenvalues of a Sturm-Liouville sytstem with discontinuous coefficients, Journal of Mathematical Analysis and Applications 54 (1976) 741-751.
[16] G. Freiling, V. A. Yurko, Inverse problems for differential equations with turning points, Inverse Problems 13 (1997) 1247-1263.
[17] R. Carlson, An inverse spectral problem for Sturm-Liouville operators with discontinuous coefficients, Proceedings of the American Mathematical Society 120 (1994) 475-484.
[18] L. Andersson, Inverse eigenvalue problems with discontinuous coefficients, Inverse Problems 4 (1988) 353-397.
[19] G. Freiling, V. A. Yurko, Inverse Sturm-Liouville problems and their applications, NOVA Science Publishers, New York, 2001.
[20] V. A. Yurko, Integral transforms connected with discontinuous boundary value problems, Integral Transforms and Special Functions 10 (2000) 141-164.
[21] R. Kh. Amirov, On Sturm-Liouville operators with discontinuity conditions inside an interval, Journal of Mathematical Analysis and Applications 317 (2006) 163-176.
[22] M. G. Gasymov, G. Sh. Guseinov, Determining of the diffusion operator from spectral data, Doklady Akademii Nauk Azerbaijan SSR. 37 (1981) 19-23.
[23] G. Sh. Guseinov, Inverse spectral problems for a quadratic pencil of Sturm-Liouville operators on a finite interval, Spectral Theory of Operators and Its Applications 7 (1986) 51-101.
[24] G. Sh. Guseinov, Asymptotic formulas for solutions and eigenvalues of quadratic pencil of Sturm- Liouville equations, Preprint Institute of Physics, Academy of Sciences of Azerbaijan 113 (1984) 49
[25] V. A. Yurko, An inverse problem for pencils of differential operators, Matematicheskii Sbornik 191 (2000) 137-160.
[26] S. A. Buterin, V. A. Yurko, Inverse spectral problem for pencils of differential operators on a finite interval, Vestnik Bashkirskogo universiteta 4 (2006) 8-12.
[27] R. Kh. Amirov, A. A. Nabiev, Inverse problems for the quadratic pencil of the Sturm-Liouville equations with impulse, Abstract and Applied Analysis 2013 (2013) 10p.
[28] I. M. Nabiev, Inverse periodic problem for a diffusion operator, Transactions of Academy of Sciences of Azerbaijan 23 (2003) 125-130.
[29] I. M. Nabiev, The inverse spectral problem for the diffusion operator on an interval, Matematicheskaya Fizika, Analiz, Geometriya 11 (2004) 302-313.
[30] A. Sh. Shukurov, The inverse problem for a diffusion operator, Proceeding of IMM of NAS of Azerbaijan 30 (2009) 105-110.
[31] M. Sat, E. S. Panakhov, Spectral problem for diffusion operator, Applicable Analysis 93 (2014) 1178-1186.
[32] Y. P. Wang, A uniqueness theorem for diffusion operators on the finite interval, Acta Mathematica Scienta 33A(2) (2013) 333-339.
[33] H. Hochstadt, B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM Journal on Applied Mathematics 34 (1978) 676-680.
[34] O. H. Hald, Discontiuous inverse eigenvalue problems, Communications on Pure and Applied Mathematics 37 (1984) 539-577.
[35] O.R. Hryniv, Y.V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse problems 20(5) (2004) 1423-1444.
[36] L. Sakhnovich, Half inverse problems on the finite interval, Inverse problems 17 (2001) 527-532.
[37] O.Martinyuk, V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems 26 (2010) 035011 6p.
[38] F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential II, The case of discrete spectrum, Transactions of the American Mathematical Society 352 (2000) 2765-2787.
[39] A. Buterin, On half inverse problem for differenrial pencils with the spectral parameter in boundary conditions, Tamkang Journal of Mathematics 42 (2011) 355-364.
[40] C.F. Yang, A. Zettl, Half Inverse Problems For Quadratic Pencils of Sturm-Liouville Operators, Taiwanese Journal of Mathematics 16(5) (2012) 1829-1846.
[41] H. Koyunbakan, E. S. Panakhov, Half-inverse problem for diffusion operators on the finite interval, Journal of Mathematical Analysis and Applications 326 (2007) 1024-1030.
[42] C. F. Yang, A half-inverse problem for the coefficients for a diffusion equation, Chinese Annals of Mathematics, Series A 32 (2011) 89-96.
[43] C.T. Shieh, V.A. Yurko,Inverse nodal and inverse spectral problems for discontinuous boundary value problems, Journal of Mathematical Analysis and Applications 374 (2008) 266-272.
[44] S. A. Buterin, V. A. Yurko, Inverse spectral problems for second-order differential pencils with Dirichlet boundary conditions, Journal of Inverse and Ill-posed Problems 20 (2012) 855-881.

[^0]: 2010 Mathematics Subject Classification. Primary 34A55 ; Secondary 34B24, 34L05
 Keywords. impulsive diffusion operator, inverse spectral problem, half inverse problem
 Received: 21 February 2014; Accepted: 10 February 2015
 Communicated by Dragan S. Djordjević
 Email addresses: ycakmak@cumhuriyet.edu.tr (Yaşar Çakmak), skaracan@cumhuriyet.edu.tr (Seval Işık)

